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Abstract. One of the highly skilled tasks in manufacturing is the polishing 
process. The purpose of polishing is to get uniform surface roughness. In order 
to reduce the polishing time and to cope with the shortage of skilled workers, 
robotic polishing technology has been investigated. This paper proposes a vi-
sion system to measure surface defects that have been classified to some level 
of surface roughness. Artificial neural networks are used to classify surface de-
fects and to give a decision in order to drive the actuator of the arm robot. Force 
and rotation time have been chosen as output parameters of artificial neural 
networks. The results show that although there is a considerable change in both 
parameter values acquired from vision data compared to real data, it is still 
possible to obtain surface defects classification using a vision sensor to a certain 
limit of accuracy. The overall results of this research would encourage further 
developments in this area to achieve robust computer vision based surface mea-
surement systems for industrial robotics, especially in the polishing process. 
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1 Introduction 

Polishing is the finishing process that is widely used in many manufacturing indus-
tries including the aerospace, automobile, dies and mould industries. It is a process 
that uses abrasives to smooth the part surface without affecting its geometry. In gen-
eral, the purpose of polishing is to get the uniform surface roughness distributed even-
ly throughout the part’s surface [1]. Traditionally, polishing has largely been a manual 
operation. It is very labor intensive, highly skill dependent, inefficient with long 
process time, high cost, error prone, and hazardous due to abrasive dust. Automation 
is a solution to overcome the above-mentioned problems of the manual operation.  
The importance of polishing automation has drawn many researchers to investigate 
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polishing robotic technology. The major goal is to improve time efficiency together 
with surface quality [2]. 

The surface roughness measured by a computer vision system over a wide range 
could be obtained with a reasonable degree of accuracy compared with those meas-
ured by traditional contact methods. Researches in surface roughness inspection and 
defects detection are usually developed and improved with artificial intelligent (AI) 
techniques [3]. One of the artificial intelligent techniques that can model human rea-
soning in solving this polishing problem is artificial neural networks (ANN). It is used 
to train the system to get the best polishing pattern. The goal of this research is to 
build the system to act like human beings and with the ability to learn. The capability 
of such a skilled polishing worker is developed by using a vision based intelligent 
robot with two-dimensional specimens using artificial neural networks.  

2 Related Works 

Successful implementation of an automated polishing system requires in-depth studies 
of the polishing process. In the past, many researches have been carried out to inves-
tigate prospective methods for designing and implementing automated polishing sys-
tems. Researchers should decide what kinds of sensors are required to realize the 
ideas. The method usually used in a polishing robot sensor system can be divided into 
contact methods and non-contact methods [4]. Presently, contact-methods occupy a 
large volume in researches of practical polishing robots. Many researchers develop 
contact-methods like force sensors [5], ultrasonic vibration [6], and the touch trigger 
probe [7] due to the fact that these methods are easy to implement. In contrast this 
process is still inefficient, because it takes much sensing time in the polishing process.  

In contradiction to contact methods, non-contact methods are rarely used for polish-
ing robots. It is often used for surface roughness and defect inspection for evaluation 
in the final manufacturing process. The non-contact methods may present an alterna-
tive to allow the surface defects to be measured rapidly with an acceptable accuracy. 
One of the most promising non-contact methods in terms of speed and accuracy is the 
computer vision technique [8]. Compared to the contact method, the computer vision 
system is a useful method for measuring the surface defects with higher speed, lower 
price, and lower environmental noise in the manufacturing process [9]. Automatic 
surface defect detection with vision systems can bring manufacturers a number of 
significant benefits, especially when used on-line.  

An experimental robotics based on a die polishing set-up using multiple vision sen-
sors and fuzzy ANN has been developed to recognize new surfaces and plan an ap-
propriate strategy for the polishing process [10]. A highly complex non-linear optimal 
problem in path planning optimization is proposed based on an improved genetic 
algorithm for a polishing robot [11]. The latest vision localization method for a micro-
polishing robot has been presented, which is restricted within a certain working space 
[12,13]. Researchers usually improve time efficiency in the polishing process by op-
timizing path planning. Therefore this research tries to use force adapted based on 
surface defects classification to reduce polishing time and cope with the shortage of 
skilled workers. 
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Fig. 6. System parameters 

Table 1. Surface defects classification process 
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D1 : 11.11 % 

D2 :   7.85 % 
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D1 : 10.17 % 
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Time  : 20 sec 
   

 

 

D1 : 6.47 % 

D2 : 3.19 % 

 

 

 

Force : 10 N 

Time  : 30 sec 
   

 

 

D1 : 3.51 % 

D2 : 2.61 % 

 

 
Rotation speed means the rotational speed of the polishing tool, and rotation time 

means the time required to improve surface quality. It is not possible to provide a very 
high speed due to some limitations of a compressor drive system. A possible parame-
ter for representing rotation speed (ω) is rotation time (t). For abrasive values, the 
parameter will be compared to the significance of surface quality change. Some levels 
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and rotation time. The relationship between D1 and t is described in x coordinates, 
while D2 and F are described in y coordinates. Data can be classified into nine clus-
ters. In data distribution, there are three clusters which are fully filled with data, four 
clusters are half-filled with data, and two clusters are not filled by the data (empty 
cluster). From this condition, seven clusters (three fully-filled clusters and four half-
filled clusters) will be used for grouping the data. Artificial neural networks will be 
modeled to get the classification from the data as shown in Figure 7. 

6 Result and Discussion 

Some experiments have been done in the Robotic Laboratory of UTeM. However the 
maximum value of force is 10N. It means when the force value reaches 10N the po-
lishing tool will be stopped immediately. Besides the maximum value of rotation time 
parameter is 30sec. This happened due to the fact that changes of surface defects val-
ues are not significant when rotation time increased to more than 30sec. Experiments 
have been conducted  66 times, in detail 30 times with force parameters of 2N, 4N, 
6N, 8N and 10N respectively. Each condition is done with five different surface de-
fects. Furthermore the 36 experiments have been done with rotation time parameters 
of 5sec, 10sec, 15sec, 20sec, 25sec and 30sec respectively. Each made five different 
surface defect conditions.  

Supervised learning was used for data classification. For each class, the values of 
classification have been given. Values for the fine class are 1 & 1.3, for the medium 
class are 1.7, 2 & 2.3, while for the rough class they are 2.7 & 3. The purpose of this 
experiment is to classify the data into several groups by using a simple three layers of 
ANN. To achieve an error value = 0.05, ANN training has been done with 534 
epochs. This training is experienced enough to teach the network forming groups of 
data. Learning error from this network is about 0.18; this value is assessed according 
to stages of the supervised learning method. The surface defect can be classified in 
order to get features and details of defects especially for scratches and corrosion.  

7 Conclusion  

This paper presents preliminary research in vision based polishing robots. The system 
is based on images taken by a CCD camera. Lighting and image pre-processing have 
been developed to divide surface defects into two levels. Polishing tasks require force 
control adapting to current levels of surface defects. The greater magnitude of unidi-
rectional force normal to the surface polishing force must be adjusted for a rougher 
surface, while a lighter magnitude must be regulated for a smoother surface.  

Artificial neural networks were used to train the robotic system to emulate a hu-
man's example in the polishing process. However defining the rules for the polishing 
process from image data which has natural variations would be a very difficult task. 
By using neural networks, any explicit classification rules do not need to be unders-
tood. Another advantage is, if the errors happened it can be retrained by using a larger 
training set. Besides, the system can be easily modified to inspect the different surface 
defect types. In future, several intelligent methods called hybrid technology will be 
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combined to minimize the learning time of neural networks. It can increase the sys-
tem's ability to be adaptive in dealing with various defects in a variety of surface con-
ditions.  
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