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Abstract— This paper presents a framework for classifying 

human hand pose, especially in grasping object intuitively. First, 

we propose a system based on the stereo infra-red image as a 

sensor that can produce hand coordinates in 3-dimensional 

space. We use egocentric vision because it can get uniform and 

natural data with only a single sensor module. Second, we 

transformed the position to get the angle information for each 

joint on the finger. Third, we designed an intelligent system 

based on Multi-Layer Perceptron (MLP) to process angular 

data to obtain classification results according to the Cutkosky 

grasp taxonomy. Finally, we compared the results on several 

similar objects and evaluated their classification accuracy. In 

the validation phase, the results yielded an accuracy of 16 grasp 

pose classification is 89,60%. In real-time testing, the results 

yielded an accuracy of 81.93%. This result shows feature-based 

learning can reduce the complexity and training time of the 

MLP. Furthermore, a small amount of training data is sufficient 

for the training and implementation.  

Keywords—grasp pose classification, human-object 

interactions, multi-layer perceptron. 

I. INTRODUCTION 

Research on Human Action Recognition (HAR) is 
sufficient to recognize human activities from primitive 
activities to complex activities [1]. Researchers usually use 
vision-based and body signal-based data. However, HAR is 
limited to human activities related to movement and gestures 
that do not involve objects. Until then, researchers began to 
open the new field of Human-Object Interactions (HOI) 
detection to recognize human activities together with objects 
[2]. HOI is a research area that is an extension of object 
detection involving HAR. However, in its application, HOI 
faces occlusion problems where it cannot detect the object 
ultimately. Research in this field also has shortcomings, 
including being more object-oriented and unable to describe 
human activities. This problem still becomes a challenge for 
research of HOI. 

In recent years many researchers have begun to be subject-
oriented in humans rather than objects [3]. They considered 
this approach is more comfortable to implement because the 
object's description from time to time always changes 
according to product design development, while humans do 
not change. Moreover, the object specification is less 
important because some acceptable terms can replace it. For 
example, weight, large, or thin is relatively more useful to 
humans than how many millimeters the object is. Meanwhile, 
how humans interact with objects needs to be known because 
humans' whole-body have different ways of interacting with 
many entities [4]. This way is necessary so that the system can 
provide the most appropriate support to humans. 

Humans interact with the world using hands to manipulate 
objects, machines, tools and socialize with other humans. 
Currently, we can study human interactions with objects 
directly by recognizing their grasping behavior [5]. It started 
with the part of the human body used to show the activity by 
hand. This approach is needed because grasping is the most 
basic human interaction with objects. Moreover, the general 
shape of the current object is not sufficient to detect. We also 
can get object information according to the geometry of the 
part held by the hand [6]. For example, opening the nut and 
bolt using a screwdriver will be easier known through the hand 
working mechanism, not from the object geometry. 

In this study, we are interested in understanding how 
humans use their hands when carrying out everyday activities, 
especially in handling objects [7]. We will classify the hand 
poses on how humans grasp egocentrically based on one of 
the standard taxonomy models. We use infra-red stereo vision 
sensors that can take and process hand data into skeletons in 
real-time. Skeleton data is joint position data in three-
dimensional coordinates. We needed the massive data in many 
variations of poses and possibilities of position. Thus we need 
to do feature extraction to simplify the process at the next 
stage [8]. We chose the joint angle because this feature is the 
easiest to calculate using the joint position. Next, we need to 
develop a learning system to process the angle features 
become grasp taxonomy classification in advance. 

This paper is structured as follows. Section 2 discusses 
why the egocentric approach is essential in the grasp pose 
classification research. Section 3 proposes a methodology in 
the development of grasp pose classification based on neural 
networks. Section 4 shows the training results and discusses 
the effectiveness of the proposed method. Finally, section 5 
presents the conclusions and future works of the research. 

II. EGOCENTRIC GRASPING  

We have encountered much research on hands, especially 
in gesture classification. Various hand gesture applications 
require high precision [9], such as communication [10], hand 
rehabilitation [11], virtual/augmented reality [12], 
teleoperation[13], and robotic imitation learning [14]. There 
are several approaches to recognizing hand poses, from 
muscle signal-based recognition, vision-based recognition, 
and a combination of the two. Gesture recognition by muscle 
signal is included in the contact method category because it 
directly connects with the hand [15]. It was usually using 
electromyography sensors that are widely available such as 
Myoarmband® and Bebobsensor®. This sensor takes data 
from several muscle signals in the arm and then can provide 
information on hand movements such as first, wave in, wave 
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out, open, and pinch. Many researchers usually use this sensor 
for presentation purposes to mobile robots. 

Vision-based recognition is included in the non-contact 
method because it does not touch hands directly[16]. Image 
from the camera can be in the 2-dimensional or 3-dimensional 
format. The 3D image can provide more accurate data and 
give a hand and each part of the finger possible position in 
detail. The 3D vision sensor that focuses on hand pose 
detection is the Leap Motion Controller® (LMC). With the 
skeleton feature on this device, we can get each joint's 
coordinates and the hand features. The researcher usually uses 
this sensor for human-computer interaction and virtual reality.  

Researchers divided vision-based hand pose recognition 
into two parts, namely: hand gesture detection and hand pose 
estimation. A hand gesture is a symbol of physical behavior 
or emotional expression and is usually performed by obtaining 
data directly from the hand image[17]. In comparison, hand 
pose estimation is the task of finding hand joints from an 
image. Hand pose estimation is currently in great demand 
because many researchers predict this approach will give more 
precision results through hand skeleton position data before 
determining detection [18]. Meanwhile, recognition based on 
combining muscle and vision signals [19] or multiplying 
sensors [20] is rarely developed because it is considered less 
practical in its application. Researchers who choose to 
combine the two methods are still optimistic that the results 
obtained will be better. 

The contact method's advantage can be used on a mobile 
basis, although some people feel uncomfortable using sensors 
on their hands. Meanwhile, the non-contact method's 
advantage is that it does not make people use the sensor in 
their hands because it is placed in one place but cannot be used 
mobile. For people who want to use the non-contact method 
but are still mobile, the only option is egocentric vision. 
Egocentric or first-person vision is a computer vision 

approach that analyzes the image from a wearable camera 
[21]. Such cameras are usually worn on the head or the chest 
and naturally approach the user's visual field. The advantage 
of egocentric vision is that we can find out a person's attention 
during activities. Currently, many vendors are producing 3D 
vision-based glasses for augmented reality applications. 
Among them is Microsoft HoloLens® or Magic Leap®, 
which can provide egocentric hand pose data and directly 
visualize 3D objects on holographic glasses. 

After we have chosen egocentric vision as the basis for our 
approach, we need to determine the classification standard. In 
the International Classification of Functioning (ICF) on 
Disability and Health issued by WHO, grasping is an essential 
part of limb movement activities [22]. WHO included 
grasping in the "Carrying, Moving and Handling Object" 
category in the "Hand" Use section, but unfortunately is not 
described in detail. We need a standard for hierarchical 
classification of the hand to get a clear structure of the hand 
and the object. In this study, we chose Cutkosky grasp 
taxonomy as the first step in data classification.  

Mark Cutkosky wrote a paper in 1989 in which he 
classified a series of manufacturing grasps for evaluating 
analytical models of grasping and manipulating objects by 
hand [23]. This taxonomy has been widely used to test hand 
dexterity. Cutkosky divides the grasp pose into two parts: 
activities that require power and the other that require 
precision. Power usually emphasis on security and stability, 
meanwhile a precision emphasis on dexterity and sensibility. 
The power section is divided into two parts, namely 
prehensile, which requires clamping, and non-prehensile, 
which does not require clamping. Next, the division is carried 
out hierarchically based on the shape of the object being held, 
such as prismatic or circular, heavy or light, big or small. 
Everything is adjusted by the way the hand and each finger 
touch the object. Fig.1 shows the Cutkosky grasp taxonomy 
on an egocentric image. 

 
Fig 1. Cutkosky grasp taxonomy on egocentric image. 



III. METHODOLOGY 

This section will discuss the proposed method used in the 
egocentric grasp pose classification. The system consists of 
four parts, namely data acquisition, data transformation, and 
data training. 

A. Data Acquisition 

We utilized Ultraleap Stereo Infra-Red 170 (SIR170), the 
next-generation LMC optical hand tracking sensor, to capture 
the hand position data in 3D coordinates. The device uses a 
pair of cameras and an infrared pattern projected by the LEDs 
to produce an image of the user's hand with depth information. 
SIR170 has a broader field of view, a more extended tracking 
range, lower power consumption, and a smaller form factor. It 
can track hands in a 3D interactive zone extending from 10 cm 
to 75cm or more, extending from the device in 170x170° 
(minimum 160x160°) ordinary field of view. Therefore, we 
categorized SIR170 into optical tracking systems based on 
stereo vision. We install the sensor on the safety glasses with 
a 15° angle facing down like in the VR application to get the 
best results.  

Accuracy is one of the essential features of the sensor 
when measuring human hand poses in 3D objects. The SIR170 
has a new motion and position tracking system with an 
accuracy of up to millimeters. This sensor is available together 
with an API (Application Programming Interface), which 
provides positions in the Cartesian space of objects such as 
fingertips and tooltips. The images obtained by the device are 
processed on a computer to remove noise and model hands, 
fingers, tools, and movements. This sensor has a deviation 
between the desired 3D position and the measured mean 
position of less than 0.2 mm for the static setting and 1.2 mm 
for the dynamic environment. The data collection also ignores 
human hand vibrations that vary in amplitude between 0.4 mm 
± 0.2 mm. This device achieves high precision when 
compared to other gesture-based interfaces (e.g., Microsoft 
Kinect®). Fig.2 shows the sensor setup with egocentric vision. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Sensor setup with egocentric vision : (a) installation of Ultraleap 
Stereo Infra-Red 170 (SIR170) on glasses; (b) side view; (c) front view. 

We connected the SIR170 to a computer using the Unity® 
application for hand visualization in a 3D environment. We 
use a computer with an Intel Core i7-10875H CPU @ 
2.30GHz (16 CPUs), 16GB RAM, and NVIDIA GEFORCE 
RTX 2080 (8GB GDDR6 VRAM) specifications. With these 
specifications, we get an average data resolution of 100 fps. 
Then we get the data of each hand joint and save it into a CSV 
file. From this data, we then read and visualize it in 3D 
coordinates. Fig.3 shows the human hand's taxonomy in 
skeleton hierarchy, reality, and computer visualization.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Taxonomy of human hand : (a) hand skeleton hierarchy; (b) hand 
image; (c) hand capsule model in Unity®; (d) hand joint 3D coordinate.  

 

B. Data Transformation 

Once we have the data, we transform 3D position data 
from the SIR170 into some features. There are 27 positions of 
points, consisting of 3 axes (x, y, z). Based on Fig.3 (d), the 
total hand position points are 81 data. We do not use the data 
directly because we will need many sample data due to the 
various possible hand poses. This stage will make training 
data in advance become heavy. The direction towards the hand 
(Normal Palm) has very many possibilities in the 3D 
environment. Moreover, not all poses to the hand can be 
appropriately detected by the sensor because of the occlusion 
factor and various estimating limitations. 

After we get the 3D coordinate for each joint, we will 
transform them before the training stage [24]. The data 
obtained is calculated relative to the SIR170 center point, 
located in the device's center. The first transformation is to 
move point W (Wrist Position) to point A (0,0,0) as the 
coordinates at the center of the sensor by making the 
displacement vector as follows: ���������⃗ � � � � (1) 

� 	
	�	�   � � 000 � � �
����  

(2) 

���������⃗   is a vector that comes from point W to point A with the 
value 	
, 	�, 	� . Thus, the points' position on the hand does not 

come out too far from their center coordinates. Because what 
we want to recognize is the pose of the hand, not the 



movement. The following is an equation for moving the center 
coordinates of Wrist Position through translation, where �, �, �  are the initial coordinates and ��, ��, �′  are the final 
coordinates. 

� �′�′�′1  � � �1 0 0 	
0 1 0 	�0 0 1 	�0 0 0 1 � . � ���1� 

 

(3) 

 

To simplify the data, we need another feature placing the 
position, and that is easiest to obtain is the angle formed by 
the joints between two bones. To get the angle feature, we 
perform three points in vector-to-angle transformation. We do 
this transformation by converting these points in the 3D 
coordinates into an angle. If we have cartesian coordinates for 

three points A, B, and C, then we can calculate �������⃗  and �������⃗ . 
The following are the equations to get two vectors from three 
points in 3D coordinates: �������⃗ � � � � (4) �������⃗ � � � � (5) 

 

Next, we need to find the angle formed by � → � → � using 
the right-hand rule from B. The following is an equation for 
scalar or dot product : 
 �������⃗ ∙ �������⃗ �   �������⃗   �������⃗  !"# $ (6) 

 

Where  �������⃗   measures the length of �������⃗  ,  �������⃗   measures 

the length of �������⃗  . Furthermore, θ (theta) is the angle between 
these two vectors. In this way, we can find the dot product �������⃗ ∙ �������⃗  and the lengths  �������⃗   and  �������⃗  . Finally, we 

rearrange the formula by substitute the equation. The 
following is an equation to find θ : $ �  %&!!"# ' �������⃗ ∙ �������⃗ �������⃗   �������⃗  ( 

 

(7) 

A finger has three joints, the first joint connecting the 
metacarpal and proximal, the second joint connecting the 
proximal and intermediate phalanges, and the third joint 
connecting the intermediate phalanges and distal phalanges. 
Especially for the thumb, it does not have metacarpals. Thus, 
a hand has 14 joints, as shown in Fig.3(a). Are there any other 
angle features? If we look at our hand, two fingers that are 
close together will form an angle. We can determine the angle 
by connecting the two fingertips' position adjacent to the wrist 
position, for example, the thumb with the index finger, the 
index finger with the middle finger, the middle finger with the 
ring finger, and the ring finger with the little finger. We will 
get four angles as additional features so that we will have a 
total of 18 angle features of a hand. 

C. Data Training  

 The data acquisition program has taken grasp poses 
according to Cutkosky grasp taxonomy. As previously 
explained, we will predict the classification of 16 grasp poses 
with supervised learning. The data transformation process has 
produced 18 angular data, which will be input data in training. 
We normalize the angular data so that they do not have large 
deviations. We changed the data so that the distribution would 

have a mean value of 0 and a standard deviation of 1. We get 
130 data for each grasp pose with different directions (Palm 
Normal).  We divided the data into two parts, 100 data for the 
training process and 30 for the validation process. So that a 
total of 1600 poses for training data and 480 poses for data 
validation. The data is saved in tabular format and stored in a 
CSV file or spreadsheet. 

We employed Multi-Layer Perceptron (MLP) as the 
vanilla architecture of artificial neural networks for the 
learning system [25]. MLP is a classic type of neural network 
consisting of one or more layers of neurons (or perceptron). It 
has the characteristic of a fully connected layer, where this 
architecture connected each neuron to every other. First, we 
design the network structure, the number of hidden layers and 
nodes in each layer. The activation functions for each layer are 
also are assumed to be known. Weights and biases are the 
unknown parameters to be estimated. Finding the best MLP 
network is formulated as a data-fitting problem, and the most 
well-known is back-propagation algorithms. 

Back-propagation is the most widely used method of 
training the MLP neural network. The system feeds data to the 
input layer. It is also possible to have a hidden layer that 
provides a level of abstraction. In the end, the output layer will 
make predictions according to the learning outcomes. This 
neural network type is suitable for solving classification 
prediction problems where the input is assigned a class or 
label. The total number of parameters in MLP can increase to 
a very high level. In other words, the number of neurons in the 
first layer is multiplied by the number of neurons in every next 
layer. This architecture is inefficient because there is 
redundancy in such high dimensions. Another disadvantage is 
that it ignores spatial information. It takes an aligned vector as 
input. To avoid this problem, we use a lightweight MLP with 
one hidden layers. Hidden layers with multiple neurons are 
required to learn non-linear decision boundaries when 
classifying the output. By learning different functions 
approximating the output dataset, one hidden layer can reduce 
the data dimension and identify a complex representation 
model of the input data. Fig. 4 shows the design of MLP that 
we employ in the learning system. 

 
Fig 4. Multilayer perceptron (MLP) with one hidden layer. 

 
We use an input layer containing 18 nodes )�*, … , �,-. 

which features the angles of 14 joints on the fingers and four 
angles connecting the fingers and wrists' tips. Our model uses 
one hidden layer, each of which consists some hidden nodes )ℎ**, … , ℎ*0.. Each node has a weight )�*.*, … , �0.1. and bias )2*, … , �0. which are always updated during the training and 

validation phases. While the output layer has 16 nodes 



)�*, … , �,3.  which is a class of grasping poses. We use a 
training loop that is the same as other models: create an 
optimizer, feed the inputs to the model, calculate the loss, and 
use the autograd function to optimize it. 

The training data steps as follows: (a) normalize the data 
structure to be accepted as an MLP input with node and 
weight properties, (b) applies a linear transformation to the 
incoming data, (c) uses the Rectifier Linear Unit (ReLU)  
function element-wire during the learning process. (d) The 
softmax layer produces the final classification and makes a 
decision. The task is to predict the input data belongs to which 
class belongs to which 16 categories of grasp pose. The 
model produced output for each node in the output layer. 
From the softmax function, we can get the confidence level 
of the learning result.  

IV. RESULTS AND DISCUSSION 

In this section, we will present the results of learning 
using MLP to classify 16 grasp poses. At the training stage, 
the grasp acquisition program reads data, enters it as MLP 
input, and carries out the learning process. As the number of 
data is categorized as small, the number of epochs selected is 
100. The loss decreases with the rising number of epochs. 
After the 100th epoch, a slight loos reduction occurred, and 
the loss value is less than 0.1. The training process is 
implemented with 100 data in each class. The experiment 
showed that the MLP learning method succeeded in a 
supervised classification when  100 epochs were completed. 
Fig. 5 shows the decrement of MLP training loss until 100 
generations for the supervised classification of 16 grasp pose. 

 

 
Fig 5. Comparison of the loss of training the MLP with one hidden layers in 
different node sizes 
 

Next, the performance of the classification has been 
evaluated at the validation stage. We have performed a 
validation process on 30 data in each class. The program 
enters each validation data into the trained model. Then the 
output of the model is compared with the label in the dataset 
to get the accuracy. Accuracy is one of the metrics for 
evaluating classification models. Informally, accuracy is a 
fraction of the predictions our models make correctly. 
Accuracy is measured with the following definition: dividing 
the number of correct predictions by the total number of 
predictions. The accuracy result from the MLP network 
above are 83.33% (100 nodes), 84.31% (250 nodes), 86.27% 
(500 nodes) and 89.60% (1000 nodes). If the number of nodes 
is enlarged, the accuracy tends to decrease. This happening 
indicates the overfitting of the model. 

This accuracy may seem reasonable at first glance, but we 
do not know how accurate the model has been training each 
hand pose. We need to find the success rate of its 
classification by testing the model using different datasets. 
The MLP structure has completed training and validation in 
the testing phase and will be tested with new data. We have 
tried the model obtained from the learning outcomes to 
recognize the type of grasp pose in some daily activities. 
Table 1 shows the result of grasp pose classification using a 
trained model. 

TABLE I.  THE RESULTS OF REAL-TIME CLASSIFICATION. 

No. Class Name Illustration Requirement Accuracy 

1 Large Diameter 

 

Power 82% 

2 Small Diameter 

 

Power 81% 

3 Medium Wrap 

 

Power 77% 

4 Adducted Tumb 

 

Power 82% 

5 Light Tool 

 

Power 79% 

6 Tumb-4 Finger 

 

Precision 86% 

7 Tumb-3 Finger 

 

Precision 81% 

8 Tumb-2 Finger 

 

Precision 61% 

9 Tumb-Index 
Finger  

Precision 83% 

10 Disk-wrap 

 

Power 82% 

11 Sphere-wrap 

 

Power 90% 

12 Disk-radial 

 

Precision 71% 

13 Sphere-radial 

 

Precision 92% 

14 Tripod-radial 

 

Precision 87% 

15 Platform Push 
 

Precision 88% 

16 Lateral Pinch 

 

Precision 89% 

 Average   81.93% 

 
The results above indicate that the average accuracy 

obtained from testing is lower than the validation results. 
However, we can see that the results for each class above 
differ from one another. Some are quite precise, that some are 
less precise. This result shows that the grasp poses dataset 
obtained has several similarities. For example, large, 
medium, and small diameters have similarities, depending on 
human inference. Other examples are disk-radial and disk-
wrap or sphere-radial and sphere-wrap, having very similar 
taxonomies. It would be tough to distinguish taxonomies if 
only looking at the taxonomy grasp alone.  

Accuracy does not tell the full story when we are 
working with a class-imbalanced grasp pose dataset. For 
example, to distinguish similar grasp poses, we need to know 
how to choose whether the grasp requires power or precision. 
These problems have some significant disparity between the 



number of identical grasp poses. In future works, the learning 
system needs additional data for MLP to get better results. 
There needs to be an approach to improve the accuracy of 
some grasp poses to be recognized in detail. One method 
proposed is the contact method, which is knowing the arm 
muscle signal during grasp activity. Furthermore, this study 
will face constraints regarding the occlusions and errors 
sensor readings when data collection. It will be the primary 
problem for developing a robust system in grasp pose 
application in the future. 

V. CONCLUSIONS 

This paper discussed grasp pose classification based on 
angle features. We utilize egocentric vision with only a single 
sensor module to obtain a uniform and natural skeletal model. 
The system obtained the data by observing the grasp pose 
when the hand interacts with the object. We taken the data 
simultaneously, transformed it into angle features, and then 
represented it in the 3D environment. We use Multi-Layer 
Perceptron (MLP) with one hidden layers for supervised 
classification for the learning system. Results showed the 
accuracy for the 16 grasps pose is 89.60%. The proposed 
method was further evaluated with daily life grasp pose 
datasets. The average grasp pose classification accuracy in 
real-time is 81.93%. Real-time testing for grasp pose with 
many possibilities is needed to be supported by distributed 
personal datasets for real-world applications. For future 
works, we will apply the proposed system to accurately and 

efficiently recognize humans-object interactions 
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