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Abstract— Hand rehabilitation in post-stroke patients with 

visual impairment is currently not supported by the 

availability of a cyber-physical-social system (CPSS) that can 

monitor physical development during daily activities. This 

paper discusses how to extract hand activity information on 

objects based on visual attention in the task-specific reach-to-

grasp cycle. We used perception-based egocentric vision to 

observe hand-object interactions (HOI) in grasping tasks. Our 

approach combines object detection with hand skeletal model 

estimation and visual attention to validate HOI detection. We 

choose a multilayer Gated Recurrent Unit (GRU) based on 

Recurrent Neural Networks (RNN) architecture to classify the 

four main activities when the hand interacts with an object 

(wonder-reach-grasp-release). We evaluated the algorithm 

quantitatively on the new dataset we introduced for cup 

grasping activity. This method can validate the HOI detection 

with 97.0% precision with less training time for small data. 

Further research will use these results to increase self-efficacy 

for independent hand-eye coordination rehabilitation support 

in community-centric systems. The code and dataset are 

available at https://github.com/anom-tmu/hoi-attention/. 

Keywords—post-stroke rehabilitation, hand-eye coordination, 

egocentric vision, hand gesture, reach-to-grasp cycle 

I. INTRODUCTION

In recovering from neurological diseases, patients need 
rehabilitation to improve their condition. One type of 
rehabilitation that therapist usually uses to enhance physical 
function is occupational therapy. This therapy aims to 
improve the patient's self-care ability and make the patient 
able to carry out daily activities independently [1]. However, 
about two-thirds of stroke survivors have a visual 
impairment related to visual field loss, double vision, and 
perceptual problems. The impact of visual problems included 
a loss of confidence, being a burden to others, increased 
collisions, and fear of falling. They find it difficult to reach 
and grasp objects due to limited hand movement and visual 
function [2]. To facilitate the rehabilitation process for these 
patients, it would be pleasant and comfortable if the patient 
could carry out the therapy process at home instead of going 
to the hospital. However, it is not easy for therapists to visit 
patients' homes during the COVID-19 pandemic. This 
problem will make patients reluctant to do recovery therapy 
at home independently.  

On the other hand, medical personnel must monitor the 
patient's rehabilitation results. Tracking patient rehabilitation 
progress can be done online via telemedicine technology [3]. 
However, patients cannot continuously carry this system due 
to limited therapy personnel or privacy concerns. Many 
studies have discussed the application of cyber-
physical-

social systems (CPSS) to monitor the hand development of 
post-stroke patients in performing daily activities [4]. Most 
researchers use the contact method, where patients must use 
electronic gloves or sensors attached to their hands and 
fingers to carry out daily activities. However, this is felt 
uncomfortable for most patients. And then, other studies turn 
to non-contact methods to address this issue. They usually 
use camera sensors facing the patient or attached to the body. 
Using cameras with egocentric vision, such as smart glasses 
[5], is the primary choice to reduce privacy issues. 

Research in the egocentric vision for monitoring hand 
activity with particular objects is commonly known as hand-
object interaction (HOI) detection. HOI detection is currently 
used in tracking patients' rehabilitation progress in post-
stroke recovery [6]. However, the application of this research 
field is limited to the detection of hands and objects without 
considering visual attention. HOI application in post-stroke 
patients with visual impairment requires eye focus and hand 
gestures towards objects. The location of the hands, objects, 
and the focal point on the image pixels is needed for the 
health monitoring system. For example, a virtual HOI 
detection with a reach-to-grasp cycle [7] defines physical 
interactions in the digital world. It is important to include 
visual attention to enhance this approach in a real-world 
application. 

The main contributions of this paper are as follows. First, 
we propose a framework for an independent hand 
rehabilitation monitoring system using feature extraction 
based on the egocentric vision in our previous work [8]. We 
developed this framework to get the feature from hands and 
objects. Then, we define the interaction by using the distance 
of each fingertip to the center of the object. Second, we 
developed the active perception ability of HOI detection 
based on features in hand gripping gestures. We used 
changing the distance of the tumb fingertip with the other 
four fingertips. Third, we evaluate cognitive ability using a 
multilayer GRU-based RNN [9] with input features obtained 
in the previous stage. This ability is needed to get symbolic 
information on four main activities: wonder, reach, grasp, 
and release. This hand activity cycle is necessary to validate 
the results of HOI detection for use in the knowledge domain 
in our previous works [10]. 

This paper is structured as follows. Section 2 discusses 
the related works on using technology for monitoring 
independent hand rehabilitation. Section 3 proposes our 
method for developing HOI detection based on visual 
attention. Section 4 shows the results and discusses the 
effectiveness of the proposed method. Finally, section 5 
presents the conclusions and future works of the research. 
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II. RELATED WORKS

Many researchers have developed independent hand 
rehabilitation monitoring studies. There are two main 
categories in a survey on hand monitoring for rehabilitation: 
contact and non-contact. The contact method is a wearable 
technology that researchers widely choose because it gives 
accurate data using several sensor technologies such as flex 
sensor, accelerometer, hall-effect, stretch-sensor, and 
magnetic sensor [11]. Developers have widely provided 
wearable technology to support this research area. However, 
this method has drawbacks, including the high cost of 
equipment and being less comfortable if used for too long. 
Therefore, researchers are looking for other alternatives by 
using the non-contact method even though the data provided 
has less accuracy than the contact method. 

Our previous studies have discussed nonverbal 
communication based on instructed learning for socially 
embedded robot partners [12]. This study aims to determine 
a person's intentions and abilities when reaching and 
grasping objects. However, it is challenging to detect a 
person's intentions by using the robot partner's point of view 
as a third person [13]. The third-person perspective depends 
on many possibilities of point of view and is constrained by 
the occlusion. It is necessary to support the existing system 
using a first-person or egocentric point of view. This 
approach is inspired by Tomasello's concept of joint 
attentional interaction between two people with an object 
[14]. Figure 1 shows the idea of triadic interaction between 
the Person-Partner Robot-Object and the robot vision of the 
person and the object. 

The use of egocentric vision-based sensors to recognize 
hand movements is a research trend that has developed 
recently [6]. Hand gesture recognition can be done by these 
vision sensors mainly by using 3D model estimation based 
on appearance-based techniques. The recognition is 
developed based on the kinematic model of the fingers. This 
volumetric model can obtain the required palm position and 
joint angle parameters. The main idea is to get the parameters 
of the hand by comparing the possible 2D view as projected 
by the 3D hand model and the input image from the camera. 

Many vendors have developed various types of cameras 
to support the research on hand gesture recognition. 
Advanced camera devices such as stereo infra-red cameras 
on the Leap Motion Controller (LMC) and the other RGB-D 
camera have also begun to be developed by many AI 
companies to improve hand measurement accuracy [15]. 
However, these devices are pretty expensive and constrained 
in a real-world implementation. So many researchers are still 
struggling with RGB cameras, which are now commonly 
installed on smartphones, smart glasses, and spy camera 
necklaces. They consider wearable cameras to have future 
potential to record all human activities, including 
maintaining health. 

Using an RGB camera is easy to use as input to estimate 
hand poses which consists of the position of the finger joints 
and the angle value. Some researchers use marker sets for 
hand motion capture, color markers, or skin-colored sections 
to get precise predictions of hand poses. However, the 
current deep learning algorithm supports real-time hand 
tracking without markers. Popular pre-trained models such as 
MediaPipe [16] already support low computing and are free. 
Thus, it becomes a friendly choice for health developers to 
use for artificial intelligence applications by using widely 
available devices. 

The combination of hand poses and their interactions 
with objects is necessary [17], especially for assessing 
rehabilitation. Research on HOI detection has an excellent 
opportunity to detect objects compared with complete human 
interaction. Problems in detecting full-human interactions 
with objects often involve complex processing, multi-
interpretation, and privacy concerns. Meanwhile, the issue of 
HOI detection is more straightforward because only hands 
and objects are detected, especially when using egocentric 
vision [18]. Egocentric or first-person vision is a computer 
vision approach that analyzes the image from a wearable 
camera. The advantages of egocentric vision include reduced 
privacy concerns, mobile supervisory, and finding attention 
during activities.  

However, using egocentric vision, the development of 
HOI detection also faces some problems, especially in 2D 
images. The first problem that researchers often encounter is 

Fig. 1. Triadic interaction between Person-Partner Robot-Object 



the lack of validity of the detection results of hand and object 
interactions. This issue arises because the data in 2D images 
cannot describe depth as in 3D data. That way, the system 
cannot ascertain the position of the hand and object. Several 
methods can overcome the above problems, such as learning 
at the interaction point [19]. However, this problem is only 
limited to one type of object, and errors can occur in 
detecting many objects. 

It is necessary to prove the existence of hand action when 
interacting with objects, especially during grasping. Grasping 
is an essential part of limb movement activities. In the 
International Classification of Functioning (ICF) on 
Disability and Health [20], WHO included grasping in the 
"Carrying, Moving and Handling Object" category, 
especially in the Fine Hand Use section (d440). In the 
"grasp" subsection, several studies have reduced it to four 
sequential activities: the reach-grasp-transport-release known 
as the reach-to-grasp cycle. However, it is infrequent for 
research to solve the problem of HOI detection using a 
medical approach like the one in the ICF. Therefore, this 
study aims to develop and use HOI detection techniques for 
hand rehabilitation in the case of the reach-to-grasp cycle. 

III. PROPOSED METHOD 

This section will discuss the stages in the development of 
task-specific reach-to-grasp cycle-based HOI detection to 
support independent rehabilitation. These stages consist of 
the experimental setup, object-centered coordinate 
transformation, and validation of HOI detection based on the 
task-specific reach-to-grasp cycle. 

A. Experimental Setup 

We use a camera in smart glasses facing the experimental 
table with egocentric vision. The smart glasses used is a 
Tobii Pro Glasses 3 used by a participant facing down 
straight at the object. The smart glasses camera has a 1920 x 
1080 pixels resolution with 25 fps. We use this camera to get 
pictures of hands and objects above the table. We installed 
this camera on a computer with Intel Core i7-10875H CPU 
@ 2.30GHz specifications (16 CPUs), 16GB RAM, and 
NVIDIA GEFORCE RTX 2080 (8GB GDDR6 VRAM). We 
chose a small cup with a handle as the hand will interact with 
this object. We selected the cup because people in daily 
activities often use it, and there are many ways to hold it. We 
will get many data variations on the reach-to-grasp cycle 
activity. Figure 2(a) shows an egocentric view with HOI 

detection using conventional hand-object interaction points. 
This image uses standard pixel coordinates, where the initial 
value (0,0) is at the top left corner of the plane. 

After doing hardware preparation and setup, we do 
software setup. To get information on the bounding box of 
hands and objects, we processed the results of capturing 
image frames in egocentric vision using YOLO (You Only 
Look Once) [21]. And then, we have improved this detection 
with the Simple Online Realtime Tracking (SORT) 
algorithm [22]. This framework has outstanding capabilities 
for learning representation and applying it in object detection 
and tracking applications. There are two things we can get 
from this object detection application. First, we can search to 
identify the object in a particular image, and second, we can 
determine the exact location of the object in the two-
dimensional image. We use MediaPipe [16] hand tracking 
from Google Research to get the estimated hand pose data. A 
framework designed explicitly for complex perceptual 
channels utilizing accelerated inference in real-time. We only 
use hand pose prediction as supporting data to validate HOI 
detection from this framework. 

B. Object-Centered Coordinate Transformation 

After we get information from object detection and 
estimation of the position of the finger joint feature, the next 
step is to perform a coordinate transformation. We have 
achieved a coordinate transformation centered on the object 
to simplify the validation process and get less input [23]. The 
purpose of centering the object is to move the initials of the 
image coordinates (0,0) to the center of the object's bounding 
box (������� , �������). Figure 2(b) shows the object-centered 
coordinates with visual attention in HOI detection. To get a 
new center (0,0) for each new frame, we need to find the 
�������  and �������  values with the following equation: 

������� = �� −
(�� − ��)

2
 

(1) 

������� = �� −
(�� − ��)

2
 

(2) 

Then we can determine the position of the new coordinates 
(��, ��) with the following equation: 

�� = �� − �������  (3) 

�� = �� − �������  (4) 

 
(a) 

 
(b) 

Fig. 2 Proposed method for HOI validation: (a) Conventional HOI point; (b) Object-centered coordinate with visual attention in HOI detection 



The algorithm uses the above equation for any pixel point 
(��, ��) in the image plane. For example, the location of the 
bounding box, which consists of the length (��) and width 
(��) of the object, or the position of the fingertip or finger 
joint in the new coordinate plane. With the further bounding 
box location information, we will get the inner and outer 
boundaries of the object. Then we can determine the distance 
between each point (��, ��)  and the center of the object 
coordinates (0,0) with the following Pythagorean equation: 

�� = ���
� + ��

� (5) 

The distance ��  will be required to determine the distance 
between the fingertip or finger joint to the object-centered 
coordinate. Next, we will use ��, ��, and �� to validate the 
hand-object interaction. 

C. Validate the HOI detection  

As discussed in the previous section, validation of HOI 
detection is limited to the reference grasp of the acceptable 
hand use section in ICF for hand rehabilitation, particularly 
in the case of the reach-to-grasp cycle [7]. There are four 
specific tasks in the process, and we will define them one by 
one. The first is the "wonder" task as the initial status, which 
indicates that the person moves the hand without reaching 
for the object. The second task is the "reach" task which is 
person extends the arm and opens his hand to the object. 
The third is the "grasp" task which is person holds the object 
with any pose. This task has transport as an additional state 
when the person moves the holding object. The fourth is the 
"released" task, when the person's open hand moves away 
from the object. Figure 3 shows the phases of the task-
specific reach-to-grasp cycle. 

As mentioned earlier, we use a single object as a 
reference. The object we chose is a medium-sized cup with 
several possible hand poses. We operate ten features 
consisting of five elements of the distance of each fingertip 
to the center of the object (��, ��, ��, ��, ��) four elements 
of the distance of each fingertip to the thumb fingertip 
(��, ��, ��, ��)  and one visual attention (��) . With our 
computer specifications, we acquire 50 fps which becomes 
our standard for determining the amount of a data sequence. 
To get the real-time result, we process 10 data in every 
single series of the image capture. We use this data as input 
for the learning system in our neural networks.  

We used recurrent neural networks (RNN) architecture 
based on a multilayer GRU for multivariate time-series 
classification [9]. The multilayer GRU architecture that we 
chose has several parameters such as input_size, which is 
the number of features in the input x; hidden_size, which is 
the number of features in the hidden state h; and number 
of_layers which is the number of recurrent layers. For each 
element in the input sequence of multilayer GRU, each layer 
computes the following function: 

�� = �(����� + ��� + � �ℎ(�"�) + � �) (6) 

#� = �(��$�� + ��$ + � $ℎ(�"�) + � $) (7) 

%� = &�%ℎ(����� + ��� + �� ∗ (� �ℎ(�"�) + � �)) (8) 

ℎ� = (1 − #�) ∗ %� + #� ∗ ℎ(�"�)) (9) 

Where ℎ& is the hidden state at time &, �� is the input at time 

&, ℎ(&−1) is the hidden state of the layer at time & − 1 or the 

initial hidden state at time ), and �� , #� , %�  are the reset, 
update, and new gates, respectively. �  is the sigmoid 
function and ∗ is the Hadamard product. In our multilayer 

GRU, the input ��
(*)

of the + -th layer (+ >= 2) is the hidden 

state ℎ�
(*"�)

 of the previous layer multiplied by dropout 

-�
(*"�)

 where each -�
(*"�)

 is a Bernoulli random variable 

which is 0 with a probability of dropout. Figure 4 shows the 
design of the system and the architecture for HOI validation. 

After developing the multilayer GRU-based RNN 
architecture, the next step is to prepare a dataset to validate 
each action on HOI detection. We capture each data by 
recording 1-2 seconds of video with a minimum of 50 fps 
per sequence. We collected 100 videos of hands interacting 
with objects with various possibilities. We made the video 
capture with the following division: 25 data for wonder-
task, 25 data for reach-task, 25 data for grasp-task including 
transport, and 25 data for release-task. As training and 
testing data, we divide it in a ratio of 80:20 randomly. We 
considered this division sufficient because the data we have 
collected is subjective. In this experiment, we involved a 
single respondent. The system uses 80 videos for training 
and 20 videos for testing. We will discuss the training and 
testing results in more detail in the results and discussion 
section. 

 

Fig. 3. Design of the system and the architecture for HOI validation. 

 



IV. RESULT AND DISCUSSION  

We have evaluated the proposed frameworks through a 
series of experiments. We conducted the experiments on a 
single person to do the task-specific reach-to-grasp cycle. 
First, we discuss the feature extraction abilities of egocentric 
vision that developed from our previous work [8]. We have 
used object-centered transformation to simplify the 
extraction of these features. However, there were some 
technical issues in feature extraction that arose in the 
development of our system. The first problem we have 
encountered is that the estimation of hand poses with 
MediaPipe predicts only one frame. 

In contrast to object detection with YOLO integrated 
with SORT tracking algorithms. The occlusion in some 
gripping poses becomes less accurate because it does not 
consider the previous data. This problem can be solved using 
hand tracking methods and finger pose estimation filters like 
in the Leap Motion Controller [24]. Another problem is that 
the data obtained is in 2D pixel units while the egocentric 
point of view is in the perspective of 3D space. With all the 
limitations, the 2D camera is sufficient to produce uniform 
features as long as the range taken is as long as the hand's 
reach, so there is no need for precise data, for example, in 
millimeters. Thus, the future development of this low-cost 
technology can be carried out by research massively. 

Second, we evaluate the test results in active perception 
ability for the task-specific reach-to-grasp cycle. We have 
conducted some experiments with five-time training using 
three variants of RNN (vanilla-RNN, GRU, and LSTM). The 
best training results are predicted in the 50th epoch, where the 
GRU wins with 13.03 seconds in average training time 
compared to RNN (20.44 seconds) and LSTM (20.48 
seconds). All of the RNN-based learning systems can be 
classified quite well. The best recognition results can be seen 
from the system's accuracy, 97.0% for GRU, 96% for RNN, 
and 94% for LSTM.  Table I shows the comparison of RNN-
based models in the 50th epoch. In this experiment, the GRU 
slightly outperformed the traditional RNN. If we compare 
the result with LSTM, GRU uses fewer tensor operations. It 
takes less time to train. However, the results of these three 
RNN-based models are almost the same. Figure 4 shows the 
training result at the 50th epoch of three RNN types for HOI 
validation. 

 Third, we examine the cognitive ability using a 
multilayer GRU-based RNN to solve a multivariate time-
series classification problem. Based on benchmarking 
multivariate time series classification study [25], this GRU 
addresses the vanishing and exploding gradient problem of 
conventional RNN. GRU is rated better than vanilla-RNN 
and LSTM. Several experiments show that the model on the 
multilayer GRU integrates quickly and provides advanced 
time-series recognition performance for a relatively small 
model. This learning algorithm improves accuracy compared 
to conventional methods such as standard RNN and the 
LSTM. With this result, we get sufficient accuracy even 
though we use few features for training. 

V. CONCLUSION AND FUTURE WORK 

This paper has discussed extracting hand activity 
information on objects based on visual attention for the task-
specific reach-to-grasp cycle. We conducted this study as a 
proposed framework for independent hand rehabilitation in 
post-stroke patients with visual impairment who have 
experienced grasping difficulties. We have developed an 
egocentric vision to observe hand-object interactions in real-
world tasks. We have successfully created object detection 
based on active perception and hand skeletal model 
estimation. Then, we successfully applied RNN with 
multilayer GRU-based architecture to classify four main 
activities: wonder-reach-grasp-release. We evaluated this 
algorithm quantitatively on a new data set for cup grasping 
activity. The results of our experiments have shown that our 
proposed method can validate HOI detection with a good 
level of precision. We will develop the proposed system to 
be faster at non-standard grasping poses in future work. We 
hope this research can adapt to various objects for eye-hand 
coordination rehabilitation needs significantly to increase the 
patients' self-efficacy. 

 
Fig. 4. Design of the system and the architecture multilayer GRU-based on RNN module for HOI validation. 

TABLE I 
COMPARISON OF RNN-BASED MODEL IN 50TH EPOCH. 

No. The architecture 

of RNN 

Learning Time 
(sec) 

Accuracy 

(%) 

1. RNN 20.44 96.0 

2. LSTM 20.48 94.0 

3. GRU 13.03 97.0 
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Fig.5. Training result at 50th epoch of three RNN type: (a) Vanilla-RNN; (b) LSTM; (c) GRU and (d) Comparison of the three types. 




